![]() Interleaved signal trace routing
专利摘要:
A multi-layer electronic device package includes first and second outer layers and at least one signal layer disposed between the outer layers. The signal layer includes signal traces and ground traces interleaved with the signal traces. A method of routing signal traces in an electronic device package includes the acts of disposing a plurality of signal traces in at least one substrate layer, and interleaving a plurality of ground traces with the signal traces. 公开号:US20010009782A1 申请号:US09/805,872 申请日:2001-03-14 公开日:2001-07-26 发明作者:Zane Ball;Aviram Gutman;Lawrence Clark 申请人:Ball Zane A.;Aviram Gutman;Clark Lawrence T.; IPC主号:H01L23-49822
专利说明:
[0001] 1. Field of the Invention [0001] [0002] The invention relates generally to multi-layer electronic device packages, and more particularly, to routing signal traces in a multi-layer package. [0002] [0003] 2. Description of Related Art [0003] [0004] Multi-layer electronic device packages, such as multi-layer printed circuit boards (“PCBs”) and multi-chip modules (“MCMs”), are well known in the art. Multi-layer packages include a plurality of substrate layers, with at least one of the outer substrate layers of the multi-layer package typically adapted to have electronic components mounted thereon. One or more of the substrate layers has conductive traces incorporated therewith that act as wires to interconnect the components mounted on the package. Other layers may provide power and ground connections to the components. [0004] [0005] Incorporating conductive traces in multiple substrate layers allows circuit designers to lay out complex circuit designs using numerous interconnections between components, while minimizing the required surface area of the package. Electrical connections between the various substrate layers of the package, and between layers of the package and components mounted on the package, is achieved using “vias.” Basically, a via is a hole extending through substrate layers that is filled with conductive material to form an electrical connection. [0005] [0006] Multi-layer packages are used extensively in computer systems and other semiconductor applications. The conductive traces of the multi-layer package may be used to route signals between components coupled to the package. Routing a high number of signals in a small area—especially high-speed signals—creates problems with parasitic noise generated from the signals routed through adjacent traces. This is especially problematic when multiple signal layers are employed for routing signals. This parasitic noise, sometimes also called “cross-talk,” may result in spurious logic errors. [0006] [0007] The present invention addresses some of the above mentioned and other problems of the prior art. [0007] SUMMARY OF THE INVENTION [0008] In one aspect of the invention, multi-layer electronic device package includes first and second outer layers and at least one signal layer disposed between the outer layers. The signal layer includes signal traces and ground traces interleaved with the signal traces. [0008] [0009] In another aspect of the invention, a method of routing signal traces in an electronic device package includes the acts of disposing a plurality of signal traces in at least one substrate layer, and interleaving a plurality of ground traces with the signal traces. [0009] [0010] In a further aspect of the invention, a semiconductor device includes a first semiconductor die, a second semiconductor die, and a multi-layer package, with the first die and the second die mounted on the multi-layer package. The multi-layer package defines at least one signal layer. Each signal layer includes signal traces and ground traces interleaved therewith, with the signal traces interconnecting the first die and the second die. [0010] BRIEF DESCRIPTION OF THE DRAWINGS [0011] Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which: [0011] [0012] FIG. 1 is a conceptualized, cross-sectional view of a multi-layer package in accordance with an embodiment of the present invention; [0012] [0013] FIG. 2 is a conceptualized, cross-sectional view of a multi-layer package having three signal layers in accordance with an embodiment of the present invention; [0013] [0014] FIG. 3 is a side view of an MCM employing a multi-layer package in accordance with an embodiment of the present invention; [0014] [0015] FIG. 4 is a side view of a PCB assembly employing a multi-layer package in accordance with an embodiment of the present invention; [0015] [0016] FIG. 5 illustrates a portion of a single layer of a multi-layer package in accordance with aspects of the present invention; [0016] [0017] FIG. 6 is a block diagram illustrating a processor having an external cache made up of a single memory die, employing a multi-layer package in accordance with an embodiment of the present invention; [0017] [0018] FIG. 7 is a block diagram illustrating a processor device having an external cache made up of two memory dice in a first configuration, employing a multi-layer package in accordance with an embodiment of the present invention; and [0018] [0019] FIG. 8 is a block diagram illustrating a processor device having an external cache made up of two memory dice in a second configuration, employing a multi-layer package in accordance with an embodiment of the present invention. [0019] [0020] While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims. [0020] DETAILED DESCRIPTION OF THE INVENTION [0021] Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort, even if complex and time-consuming, would be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. [0021] [0022] FIG. 1 illustrates a conceptualized cross-section of a multi-layer electronic device package [0022] 10 in accordance with an embodiment of the present invention. The exemplary package 10 includes two outer layers 12, 14. In one embodiment, the outer layers comprise a ground (VSS) layer 12 and a power (VCC) layer 14. Other outer layer arrangements are possible, such as two outer ground layers in conjunction with an inner power layer. The package 10 further includes at least one internal signal layer 16 disposed between the outer layers 12, 14. Each layer 12, 14, 16 of the package comprises two portions, including an insulating portion and a conductive portion disposed on, or incorporated with, the insulating portion as discussed more fully below. In the present specification, a “substrate layer” refers to any of the layers of the multi-layer package, including both the insulating portion and the conductive portion incorporated therewith. [0023] The substrate layers [0023] 12, 14, 16 of the package 10 may be fabricated out of any suitable substrate material, including standard PCB materials such as Fire Retardant-4 (“FR-4”), Bismaleimide Triazine (“BT”), ceramic, or an organic advanced printed circuit board (“APCB”) substrate material as is known in the art. In typical PCB manufacture, conductive traces are formed on each layer, then the layers are stacked and bonded together. With an APCB material, the conductive traces may be built up upon the nonconducting substrate using thin film approaches. Thus, with an APCB substrate, the multiple layers are usually built-up by a sequential process. [0024] The signal layers of known multi-layer packages typically define a plurality of conductive signal traces for routing signals between components coupled to the package. In the embodiment of the invention illustrated in FIG. 1, however, the signal layer [0024] 16 includes both ground (VSS) traces 22 and signal traces 24. The traces 22, 24 are arranged such that the ground traces 22 shield adjacent signal traces 24 from each other. The ground traces 22 are “interleaved,” or alternated with the signal traces 24 within the is signal layer 16 to provide this shielding. [0025] FIG. 2 illustrates a multi-layer package [0025] 11 in accordance with an embodiment of the invention that includes three signal layers 16, 18, 20. As in the embodiment illustrated in FIG. 1, the ground traces 22 are interleaved with the signal traces 24 within each of the signal layers 16, 18, 20. Alternative embodiments may have some signal layers that have ground traces interleaved with the signal traces to shield the signal traces, while other signal layers do not have ground traces shielding the signal traces. [0026] The ground traces [0026] 22 may further be arranged such that, in addition to shielding adjacent signal traces 24 within a signal layer, ground traces 22 are interleaved with signal traces 24 between layers, thus reducing cross-talk from signal traces 24 in other signal layers. For example, as shown in FIG. 2, ground traces 22 in signal layer 18 are situated between aligned signal traces 24 in signal layers 16 and 20. Interleaving ground traces 22 with signal traces 24 between layers may eliminate the need for additional ground layers, increasing the potential signal density without requiring additional device layers and associated costs of adding a layer. [0027] Multi-layer packages in accordance with the present invention are particularly suitable in applications requiring routing of several high-speed signals. For example, the signal traces [0027] 24 may be used to route a plurality of signals between two or more semiconductor devices mounted on the multi-layer package. FIG. 3 illustrates an exemplary multi-chip module (“MCM”) 40 in accordance with an embodiment of the invention, in which two semiconductor dice 42, 44 are mounted directly on a multi-layer package 38 using any of several known methods, including wire bonding, tape automated bonding (“TAB”), controlled collapse chip connection (“C4”), etc. The package 38 includes a plurality of layers 12, 14, 16, including at least one signal layer 16 having signal traces and ground traces (not shown in FIG. 3) interleaved in the manner described in conjunction with FIG. 1 and FIG. 2. In embodiments employing multiple signal layers, the ground traces may be further interleaved with signal traces between layers. [0028] A plurality of vias [0028] 32 interconnect the substrate layers 12, 14, 16, and also couple the substrate layers 12, 14, 16 to the semiconductor dice 42, 44. The vias 32 further couple the layers 12, 14, 16 and the semiconductor dice 42, 44 to the bottom surface of the package 38, which in turn, may be coupled to another package such as a system motherboard or other PCB with surface-mount or through-hole techniques as are well known in the art. [0029] FIG. 4 illustrates an exemplary PCB assembly [0029] 41, such as a computer system motherboard, in accordance with aspects of the present invention, wherein a multi-layer package 39 is embodied in a PCB. Two or more semiconductor dice 42, 44 are disposed in individual component packages 46, 48, which, for example, may comprise pin grid array (“PGA”) packages, ball grid array (“BGA”) packages, dual in-line packages (“DIP”), or other package types as are known in the art. In the particular embodiment illustrated in FIG. 5, the component packages 46, 48 comprise BGA packages that are mounted on the multi-layer package 39 via a plurality of solder balls 50. [0030] The package [0030] 39 includes a plurality of layers 12, 14, 16, including at least one signal layer 16 having signal traces and ground traces (not shown in FIG. 4) interleaved in the manner described in conjunction with FIG. 1 and FIG. 2. In embodiments employing multiple signal layers, the ground traces may be further interleaved with signal traces between layers. A plurality of vias 32 interconnects the layers 12, 14, 16 of the package 10, and also connects the conductive portions of the layers 12, 14, 16 to the solder ball array 50 of the component packages 46, 48. [0031] The number of traces routed per layer may be limited in various embodiments of the invention by, among other things, the size of the package, the pitch and width of the traces, and the diameter and horizontal pitch of the vias in various embodiments of the invention. FIG. 5 illustrates an example of a portion of a substrate layer [0031] 30 of a multi-layer package in accordance with aspects of the present invention. The layer 30 defines a plurality of vias 32 therethrough that interconnect the various layers of the multi-layer package. Vias 32 also provide interconnections between the components mounted on the package and the various layers of the package. For example, in applications in which the components are mounted on the package using C4, the vias terminate in a via land, sometimes referred to as a “bump,” to which the component connects. A plurality of traces 34, comprising both signal and ground traces, are disposed on the layer 30 in an interleaved manner as disclosed above. [0032] The relative size of the vias [0032] 32 and the traces 34, along with the required spacing between the vias 32 and the traces 34, influences the number of traces 34 that will fit between adjacent vias 32 and is implementation specific. In one embodiment, the trace pitch is about 74 μm, the signal and ground traces 34 are about 37 μm wide, the via pitch is about 318 μm and the opening diameter of the vias 32 is about 150 μm. Thus, two traces 34 may be routed between vias 32 in this embodiment. FIG. 3 also illustrates a trace 36 that, while meeting the minimum pitch requirements, is unroutable, or “trapped,” due to the positioning of the vias 32. In a particular embodiment having trace and via pitch and sizes as described above, 250 signals were able to be routed in a 18,500 μm wide array. [0033] The exemplary MCM [0033] 40 and PCB assembly 41 illustrated in FIG. 3 and FIG. 4 may comprise, for example, a processor device, such as the type around which a computer is mounted. Processors typically include various cache memories, including memory caches and disk caches. A memory cache typically is a portion of memory made of high-speed static random access memory (“SRAM”) instead of the slower and cheaper dynamic random access memory (“DRAM”) used for main memory. Memory caching is effective because most programs access the same data or instructions over and over. By keeping as much of this information as possible in SRAM, the computer avoids accessing the slower DRAM. [0034] Some memory caches are built into the architecture of processors and are known as “internal” caches. Such internal caches are often called primary, or Level 1 (“L1”) caches. The processor may access main memory and L1 caches via a system bus. Many computers also come with external cache memory, often called Level 2 (“L2”) caches. The processor may access the L2 cache via a dedicated bus, sometimes referred to as a “backside bus.” Like L1 caches, L2 caches are composed of SRAM, but they are typically much larger. The L2 cache improves system-level performance by improving the processor's memory read and write performance, as well as decreasing the system bus utilization. The large L2 cache results in less processor read requirements to main memory, thereby reducing the number of times the processor needs to access the system bus. [0034] [0035] In a particular embodiment in accordance with aspects of the present invention, a multi-layer package is used to implement a backside bus that interconnects a processor and an external cache. FIG. 6 illustrates such a processor device [0035] 70, including a processor semiconductor die 62 and at least one cache semiconductor die 64 coupled to a multi-layer package 66 having interleaved signal and ground traces as disclosed herein above. FIG. 7 shows another processor device 71 employing a processor semiconductor die 62 and two cache dice 64 situated on opposite sides of the processor die 62. FIG. 8 illustrates yet another processor device 72 having two cache dice 64 situated to one side of a processor die 62 in a generally L-shaped configuration. In each of the embodiments illustrated in FIG. 6, FIG. 7 and FIG. 8, the processor 62 may be any type of processor known to the art, and likewise, the cache 64 may be any suitable memory device known to the art. [0036] The processor die [0036] 62 and the one or more memory dice 64 are interconnected by a backside bus 68 for routing signals therebetween. The backside bus 68 comprises a plurality of signal traces disposed within the signal layers of the multi-layer package 66 in the manner described in conjunction with FIG. 1 and FIG. 2. The processor die 62 and memory dice 64 may be directly coupled to the package 66, as illustrated in FIG. 3. Alternatively, the processor and memory dice 62, 64 may be disposed in individual component packages that are mounted on the package 66 in the manner described in conjunction with FIG. 4. [0037] To increase system performance, it is desirable to increase the width (number of signal traces) of the backside bus, while increasing processor speed. In other words, providing more interconnections (conductive traces) between the processor [0037] 62 and cache 64 would allow more signals to be transferred in a given time period. However, problems such as cross-talk between signal traces has limited the width of existing backside buses. Prior to the present invention, routing signal traces in multiple signal layers has been largely unsatisfactory, as traces in adjacent layers typically may not be used simultaneously due to intense cross-talk between the traces. Interleaving ground traces 22 with signal traces 24 (referring to FIG. 1) reduces cross-talk, allowing simultaneous use of traces in adjacent layers, thus providing a greater density of usable signal traces 24 within a given package space. Moreover, providing both signal and ground traces within a layer may eliminate a ground layer in the package, providing additional signal layers without the added expense and complication of adding additional layers to the package. [0038] The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below. [0038]
权利要求:
Claims (34) [1" id="US-20010009782-A1-CLM-00001] 1. A multi-layer electronic device package comprising: first and second outer layers; and a plurality of signal layers disposed between the outer layers, the signal layers including signal traces and ground traces interleaved with the signal traces. [2" id="US-20010009782-A1-CLM-00002] 2. The multi-layer electronic device package of claim 1 wherein the first outer layer defines a ground layer. [3" id="US-20010009782-A1-CLM-00003] 3. The multi-layer electronic device package of claim 1 wherein the second outer layer defines a power source layer. [4" id="US-20010009782-A1-CLM-00004] 4. The multi-layer electronic device package of claim 1 wherein the plurality of signal layers comprises three signal layers. [5" id="US-20010009782-A1-CLM-00005] 5. The multi-layer electronic device package of claim 1 wherein the ground traces are interleaved with signal traces within the signal layer. [6" id="US-20010009782-A1-CLM-00006] 6. The multi-layer electronic device package of claim 1 wherein the ground traces are interleaved with signal traces between signal layers. [7" id="US-20010009782-A1-CLM-00007] 7. The multi-layer electronic device package of claim 1 wherein the outer layers and the signal layers define a plurality of vias. [8" id="US-20010009782-A1-CLM-00008] 8. The multi-layer electronic device package of claim 1 wherein the signal traces are configured to route at least 250 signals. [9" id="US-20010009782-A1-CLM-00009] 9. The multi-layer electronic device package of claim 1 wherein the signal traces are adapted to interconnect a processor and a memory device. [10" id="US-20010009782-A1-CLM-00010] 10. The multi-layer electronic device package of claim 9 further comprising a processor and a memory device coupled to the multi-layer electronic device package such that the signal traces interconnect the processor and the memory device. [11" id="US-20010009782-A1-CLM-00011] 11. A multi-layer electronic device package comprising: a ground layer; a power layer; a plurality of signal layers, each signal layer including a plurality of signal traces; and means for shielding the signal traces from each other. [12" id="US-20010009782-A1-CLM-00012] 12. A method of routing signal traces in an electronic device package comprising the acts of: disposing a plurality of signal traces in at least one substrate layer; and interleaving a plurality of ground traces with the signal traces. [13" id="US-20010009782-A1-CLM-00013] 13. The method of claim 12 wherein the disposing act further comprises disposing the signal traces in at least one substrate layer situated between a ground layer and a power layer. [14" id="US-20010009782-A1-CLM-00014] 14. The method of claim 12 wherein the disposing act further comprises disposing the signal traces in three substrate layers. [15" id="US-20010009782-A1-CLM-00015] 15. The method of claim 12 wherein the interleaving act comprises interleaving the ground traces with the signal traces within at least one of the substrate layers. [16" id="US-20010009782-A1-CLM-00016] 16. The method of claim 12 wherein the interleaving act comprises interleaving the ground traces with the signal traces between the substrate layers. [17" id="US-20010009782-A1-CLM-00017] 17. The method of claim 12 wherein the disposing the signal traces act further comprises disposing the signal traces so as to route at least 250 signals. [18" id="US-20010009782-A1-CLM-00018] 18. The method of claim 12 wherein the disposing the signal traces act further comprises coupling the signal traces between a processor and a memory device. [19" id="US-20010009782-A1-CLM-00019] 19. A semiconductor device comprising: a first semiconductor die; a second semiconductor die; and a multi-layer package, the first die and the second die being mounted on the multi-layer package; the multi-layer package defining at least one signal layer, each signal layer including signal traces and ground traces interleaved therewith, the signal traces interconnecting the first die and the second die. [20" id="US-20010009782-A1-CLM-00020] 20. The semiconductor device of claim 19 wherein the first semiconductor die is disposed in a first component package that is mounted on the multi-layer package. [21" id="US-20010009782-A1-CLM-00021] 21. The semiconductor device of claim 20 wherein the second semiconductor die is disposed in a second component package that is mounted on the multi-layer package. [22" id="US-20010009782-A1-CLM-00022] 22. The semiconductor device of claim 19 wherein the at least one signal layer comprises three signal layers. [23" id="US-20010009782-A1-CLM-00023] 23. The semiconductor device of claim 19 wherein the first semiconductor die comprises a processor. [24" id="US-20010009782-A1-CLM-00024] 24. The semiconductor device of claim 19 wherein the second semiconductor die comprises at least one memory device. [25" id="US-20010009782-A1-CLM-00025] 25. The semiconductor device of claim 24 wherein the at least one memory device comprises two memory devices. [26" id="US-20010009782-A1-CLM-00026] 26. The semiconductor device of claim 25 wherein the memory devices are situated on opposite sides of the processor. [27" id="US-20010009782-A1-CLM-00027] 27. The semiconductor device of claim 25 wherein the memory devices are situated on one side of the processor. [28" id="US-20010009782-A1-CLM-00028] 28. The semiconductor device of claim 19 wherein the ground traces are interleaved with the signal traces within at least one of the signal layers. [29" id="US-20010009782-A1-CLM-00029] 29. The semiconductor device of claim 19 wherein the ground traces are interleaved with the signal traces between signal layers. [30" id="US-20010009782-A1-CLM-00030] 30. The semiconductor device of claim 19 further comprising a plurality of vias that couple the signal traces to the first semiconductor die and the second semiconductor die. [31" id="US-20010009782-A1-CLM-00031] 31. A multi-layer electronic device package comprising: a plurality of signal traces; and a plurality of ground traces interleaved with the plurality of signal traces. [32" id="US-20010009782-A1-CLM-00032] 32. The multi-layer electronic device package of claim 31 wherein the signal traces and the ground traces are incorporated in at least one substrate layer. [33" id="US-20010009782-A1-CLM-00033] 33. The multi-layer electronic device package of claim 32 wherein the ground traces are interleaved with the signal traces within at least one substrate layer. [34" id="US-20010009782-A1-CLM-00034] 34. The multi-layer electronic device package of claim 32 wherein the ground traces are interleaved with the signal traces between substrate layers.
类似技术:
公开号 | 公开日 | 专利标题 US6246112B1|2001-06-12|Interleaved signal trace routing US7154175B2|2006-12-26|Ground plane for integrated circuit package US5903050A|1999-05-11|Semiconductor package having capacitive extension spokes and method for making the same US6576992B1|2003-06-10|Chip scale stacking system and method US5495394A|1996-02-27|Three dimensional die packaging in multi-chip modules JP4707446B2|2011-06-22|Semiconductor device US20100314761A1|2010-12-16|Semiconductor device with reduced cross talk US9622339B2|2017-04-11|Routing design for high speed input/output links US8399301B2|2013-03-19|Mounting structures for integrated circuit modules US20010040792A1|2001-11-15|Multi-chip module having interconnect dies US6127726A|2000-10-03|Cavity down plastic ball grid array multi-chip module US20100327436A1|2010-12-30|Apparatus and method for stacking integrated circuits US7161812B1|2007-01-09|System for arraying surface mount grid array contact pads to optimize trace escape routing for a printed circuit board JP2001007249A|2001-01-12|Package substrate and semiconductor device provided with the same US10636741B2|2020-04-28|Printed wiring board US7816610B2|2010-10-19|Layout circuit US6501664B1|2002-12-31|Decoupling structure and method for printed circuit board component US20030230428A1|2003-12-18|PBGA electrical noise isolation of signal traces US7679201B2|2010-03-16|Device package US20030067082A1|2003-04-10|Apparatus and methods for stacking integrated circuit devices with interconnected stacking structure JP3896250B2|2007-03-22|Information processing device TWI713163B|2020-12-11|Semiconductor package JP2019114676A|2019-07-11|Printed wiring board US8669593B2|2014-03-11|Semiconductor integrated circuit JPH10294435A|1998-11-04|Memory module and information processor
同族专利:
公开号 | 公开日 US20010010395A1|2001-08-02| US6352914B2|2002-03-05| US6246112B1|2001-06-12| US6426550B2|2002-07-30|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US20060244120A1|2003-08-27|2006-11-02|Minka Gospodinova-Daltcheva|Semiconductor device with a rewiring level and method for producing the same| US20100219406A1|2007-10-02|2010-09-02|Basf Se|Use of acridine derivatives as matrix materials and/or electron blockers in oleds|US5310787A|1991-06-04|1994-05-10|Du Pont-Mitsui Polychemicals Co., Ltd.|Polyester packaging material| DE4319008A1|1992-07-07|1994-01-13|Brown John Deutsche Eng Gmbh|Polyester resin for producing articles of high clarity and neutral color| KR950003803A|1993-07-29|1995-02-17|배순훈|Automatic continuous impact test device| AR000405A1|1995-03-27|1997-06-18|Eastman Chem Co|Process to prepare polyesters| US5708296A|1996-06-24|1998-01-13|Intel Corporation|Power-ground plane for a C4 flip-chip substrate| US6054758A|1996-12-18|2000-04-25|Texas Instruments Incorporated|Differential pair geometry for integrated circuit chip packages|US7336468B2|1997-04-08|2008-02-26|X2Y Attenuators, Llc|Arrangement for energy conditioning| US9054094B2|1997-04-08|2015-06-09|X2Y Attenuators, Llc|Energy conditioning circuit arrangement for integrated circuit| US7321485B2|1997-04-08|2008-01-22|X2Y Attenuators, Llc|Arrangement for energy conditioning| US7301748B2|1997-04-08|2007-11-27|Anthony Anthony A|Universal energy conditioning interposer with circuit architecture| US6777320B1|1998-11-13|2004-08-17|Intel Corporation|In-plane on-chip decoupling capacitors and method for making same| US6553555B1|1999-08-27|2003-04-22|Dell Products L.P.|Maintaining signal guard bands when routing through a field of obstacles| US6441479B1|2000-03-02|2002-08-27|Micron Technology, Inc.|System-on-a-chip with multi-layered metallized through-hole interconnection| US7107673B2|2000-06-19|2006-09-19|Nortel Networks Limited|Technique for accommodating electronic components on a multiplayer signal routing device| US6380633B1|2000-07-05|2002-04-30|Siliconware Predision Industries Co., Ltd.|Pattern layout structure in substrate| AT353118T|2000-07-18|2007-02-15|Delphi Tech Inc|FUEL INJECTION VALVE| JP2002110805A|2000-09-28|2002-04-12|Toshiba Corp|Semiconductor device| US6559484B1|2000-09-29|2003-05-06|Intel Corporation|Embedded enclosure for effective electromagnetic radiation reduction| JP3563030B2|2000-12-06|2004-09-08|シャープ株式会社|Method for manufacturing semiconductor device| US7348494B1|2000-12-15|2008-03-25|Nortel Networks Limited|Signal layer interconnects| US6591410B1|2000-12-28|2003-07-08|Lsi Logic Corporation|Six-to-one signal/power ratio bump and trace pattern for flip chip design| US6900992B2|2001-09-18|2005-05-31|Intel Corporation|Printed circuit board routing and power delivery for high frequency integrated circuits| US6521846B1|2002-01-07|2003-02-18|Sun Microsystems, Inc.|Method for assigning power and ground pins in array packages to enhance next level routing| US10811277B2|2004-03-23|2020-10-20|Amkor Technology, Inc.|Encapsulated semiconductor package| US7399661B2|2002-05-01|2008-07-15|Amkor Technology, Inc.|Method for making an integrated circuit substrate having embedded back-side access conductors and vias| US7670962B2|2002-05-01|2010-03-02|Amkor Technology, Inc.|Substrate having stiffener fabrication method| US20080043447A1|2002-05-01|2008-02-21|Amkor Technology, Inc.|Semiconductor package having laser-embedded terminals| US6930256B1|2002-05-01|2005-08-16|Amkor Technology, Inc.|Integrated circuit substrate having laser-embedded conductive patterns and method therefor| US11081370B2|2004-03-23|2021-08-03|Amkor Technology Singapore Holding Pte. Ltd.|Methods of manufacturing an encapsulated semiconductor device| US7548430B1|2002-05-01|2009-06-16|Amkor Technology, Inc.|Buildup dielectric and metallization process and semiconductor package| US9691635B1|2002-05-01|2017-06-27|Amkor Technology, Inc.|Buildup dielectric layer having metallization pattern semiconductor package fabrication method| US7002253B2|2003-04-30|2006-02-21|Matsushita Electric Industrial Co., Ltd.|Semiconductor device and design method thereof| US7321167B2|2003-06-04|2008-01-22|Intel Corporation|Flex tape architecture for integrated circuit signal ingress/egress| EP1487015B1|2003-06-10|2011-05-04|STMicroelectronics Srl|Semiconductor electronic device and method of manufacturing thereof| US7145238B1|2004-05-05|2006-12-05|Amkor Technology, Inc.|Semiconductor package and substrate having multi-level vias| US7157647B2|2004-07-02|2007-01-02|Endicott Interconnect Technologies, Inc.|Circuitized substrate with filled isolation border, method of making same, electrical assembly utilizing same, and information handling system utilizing same| US7157646B2|2004-07-02|2007-01-02|Endicott Interconnect Technologies, Inc.|Circuitized substrate with split conductive layer, method of making same, electrical assembly utilizing same, and information handling system utilizing same| WO2006093831A2|2005-03-01|2006-09-08|X2Y Attenuators, Llc|Energy conditioner with tied through electrodes| JP2008535207A|2005-03-01|2008-08-28|エックストゥーワイアテニュエイターズ,エルエルシー|Regulator with coplanar conductor| US8826531B1|2005-04-05|2014-09-09|Amkor Technology, Inc.|Method for making an integrated circuit substrate having laminated laser-embedded circuit layers| US7275229B2|2005-06-23|2007-09-25|International Business Machines Corporation|Auto connection assignment system and method| KR101390426B1|2006-03-07|2014-04-30|엑스2와이 어테뉴에이터스, 엘.엘.씨|Energy conditioner structures| JP5285842B2|2006-04-13|2013-09-11|パナソニック株式会社|Integrated circuit mounting board and power line communication device| US7589398B1|2006-10-04|2009-09-15|Amkor Technology, Inc.|Embedded metal features structure| US7609125B2|2006-10-13|2009-10-27|Avago Technologies Enterprise IPPte. Ltd.|System, device and method for reducing cross-talk in differential signal conductor pairs| US7542265B2|2006-11-28|2009-06-02|General Electric Company|High energy density capacitors and methods of manufacture| US7752752B1|2007-01-09|2010-07-13|Amkor Technology, Inc.|Method of fabricating an embedded circuit pattern| US9036364B1|2007-04-24|2015-05-19|Rpx Clearinghouse Llc|Circuit board with signal layers of different dimensions to communicate signals of different frequencies| WO2008135305A1|2007-05-08|2008-11-13|International Business Machines Corporation|Method and apparatus for scalable and programmable delay compensation for real-time synchronization signals in a multiprocessor system with individual frequency control| KR101385094B1|2007-09-11|2014-04-14|삼성디스플레이 주식회사|Printed circuit board, display apparatus having the same and method of manufacturing the printed circuit board| US7777330B2|2008-02-05|2010-08-17|Freescale Semiconductor, Inc.|High bandwidth cache-to-processing unit communication in a multiple processor/cache system| US8872329B1|2009-01-09|2014-10-28|Amkor Technology, Inc.|Extended landing pad substrate package structure and method| WO2011027186A1|2009-09-02|2011-03-10|先进封装技术私人有限公司|Package structure| US8946900B2|2012-10-31|2015-02-03|Intel Corporation|X-line routing for dense multi-chip-package interconnects| US9545003B2|2012-12-28|2017-01-10|Fci Americas Technology Llc|Connector footprints in printed circuit board | CN104378907B|2013-08-12|2017-06-30|富葵精密组件有限公司|Circuit board and preparation method thereof| US10211444B2|2013-09-06|2019-02-19|Johnson Controls Technology Company|System and method for venting pressurized gas from a battery module| TWI572256B|2014-01-09|2017-02-21|上海兆芯集成電路有限公司|Circuit board and electronic assembely| CN103889145B|2014-01-09|2017-01-18|上海兆芯集成电路有限公司|Circuit board and electronic assembly| US9542522B2|2014-09-19|2017-01-10|Intel Corporation|Interconnect routing configurations and associated techniques| CN106488642A|2015-08-27|2017-03-08|富葵精密组件有限公司|Flexible circuit board and preparation method thereof| US10217708B1|2017-12-18|2019-02-26|Apple Inc.|High bandwidth routing for die to die interposer and on-chip applications| US10685925B2|2018-01-26|2020-06-16|Nvidia Corporation|Resistance and capacitance balancing systems and methods| US10756019B1|2018-11-27|2020-08-25|Xilinx, Inc.|Systems providing interposer structures| US20210407915A1|2020-06-30|2021-12-30|Western Digital Technologies, Inc.|Printed circuit board compensation structure for high bandwidth and high die-count memory stacks|
法律状态:
2002-02-14| STCF| Information on status: patent grant|Free format text: PATENTED CASE | 2005-09-02| FPAY| Fee payment|Year of fee payment: 4 | 2009-09-02| FPAY| Fee payment|Year of fee payment: 8 | 2013-03-14| FPAY| Fee payment|Year of fee payment: 12 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 US09/096,276|US6246112B1|1998-06-11|1998-06-11|Interleaved signal trace routing| US09/805,872|US6352914B2|1998-06-11|2001-03-14|Interleaved signal trace routing|US09/805,872| US6352914B2|1998-06-11|2001-03-14|Interleaved signal trace routing| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|